MIDSEMESTRAL

Elementary Number Theory

Instructor: Ramdin Mawia Marks: 30 Time: September 11, 2025; 14:00–17:00.

Attempt FIVE problems. The maximum you can score is 30.

1. Let p be a prime, and n be a positive integer. Prove that the highest power of p dividing n! is given by

$$e = \sum_{j=1}^{\infty} \left[\frac{n}{p^j} \right]$$

where [x] denotes the largest integer $\leq x$. Using this or otherwise, prove the following: If $a_1, ..., a_k$ are nonnegative integers such that $a_1 + \cdots + a_k = n$, then $n!/a_1! \cdots a_k!$ is an integer. [Hint. $[x] + [y] \leq [x + y]$.]

- 2. If m and n are positive integers having the same prime factors, show that $m/\varphi(m) = n/\varphi(n)$. Using this or otherwise, prove the following: Given any positive integer n, there is a positive integer m such that $\varphi(m) = n!$ [Hint. You may choose m and n! to have the same prime factors.]
- 3. State whether the following statements are true or false, with complete justifications:
 - i. If $p \equiv 1 \pmod{4}$ is a prime, then $\left[\left(\frac{p-1}{2} \right)! \right]^2 \equiv -1 \pmod{p}$.
 - ii. Let p be an odd prime, k a positive integer and x,y be dinstinct integers such that $x\equiv y\pmod{p^k}$ and $p\nmid xy$. If n is a positive integer such that $n\equiv 0\pmod{p^\ell}$ for some integer $\ell\geqslant 0$, then

$$x^n \equiv y^n \pmod{p^{k+\ell}}.$$

7

- 4. Find the smallest positive integer x (if any) such that $x^5 \equiv 7 \pmod{19}$.
- 5. Let $p \geqslant 5$ be a prime. Write

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{a}{b}$$

where a and b are integers. Prove that p|a. **Bonus (+5 marks)**: Show that in fact $p^2|a$. [Hint for the bonus problem. Let $f(X) = (X-1)(X-2)\cdots(X-p+1)$. Prove that there is a polynomial r(X) with integer coefficients such that $X^p - X = Xf(X) + pr(X)$. Compare both sides and evaluate f(p).]

6. Prove that there are infinitely many primes of the form 4k+1. [Hint. Let $n \ge 2$ be an integer. Then 7 any prime factor of $N := (n!)^2 + 1$ is of the form 4k+1.]

OF

- 6. Let p > 5 be a prime. Suppose there is an integer a with 1 < a < p 2 which has order 3 mod p. Prove that $p \equiv 1 \pmod{6}$ and find the order of $a + 1 \pmod{p}$.
- 7. Let p be an odd prime. When do we say that an integer r is a primitive root for p? Let (r,p)=1 and $p-1=p_1^{e_1}\cdots p_k^{e_k}$ be the prime factorisation of p-1. Prove that r is a primitive root for p if and only if
 - i. $r^{p-1} \equiv 1 \pmod{p}$;
 - ii. $r^{(p-1)/p_i} \not\equiv 1 \pmod{p}$ for any i = 1, ..., k.

OR

7. Find the smallest positive integer x satisfying

$$x \equiv 0 \pmod{3},$$

 $x \equiv 1 \pmod{5},$
 $x \equiv 2 \pmod{14}.$